If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19w^2+33w=0
a = 19; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·19·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*19}=\frac{-66}{38} =-1+14/19 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*19}=\frac{0}{38} =0 $
| -7.8=x+5.2 | | -71x+(-48)=25 | | 17x^2/20=x | | 5x+(45)=20 | | 3y-7=0+1 | | 3x/5=150 | | a/3=5= | | 8y+3=180 | | -3(x+1)=x-18 | | n+31/9=8 | | 2p-15500=29078 | | 2(3+y)=60 | | x+32/5+26=37 | | 10x=2.54 | | -x4-8=x-8-x | | 96-4x=-23 | | 2a/3-a/6=1 | | 1-4z/9=Z-3/6 | | 2y/5-3=y | | 2(7+x)=38-x | | 4x+2+13x+3=90 | | 2-3.5x=1.5x | | 20-5a=9a-13 | | x-80+x+20=180 | | y-10=44 | | b/144=12 | | -54+6x2=0 | | 3^2x+2-5*9^x=324 | | L=3y+53 | | -9-13=2y | | y8=20 | | -3-2y-13=0 |